Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
J Mater Chem B ; 11(42): 10218-10233, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37869981

RESUMO

Polymer-based composites are considered promising candidates for bone repair as they possess some outstanding advantages over ceramic/metallic/polymeric biomaterials. Tantalum (Ta)/polyimide (PI) biocomposites (PT) containing 20 v% (PT20) and 40 v% (PT40) Ta nanoparticles were fabricated, and luteolin (LU) was loaded on PT40 (LUPT40). Compared with PT20 and PI, PT40 with a high Ta content displayed high surface behaviors (e.g., roughness, surface energy, and hydrophilicity). PT40 remarkably improved cell adhesion and multiplication, and LUPT40 with LU displayed further enhancement in vitro. Moreover, LUPT40 evidently boosted osteoblastic differentiation while suppressing osteoclastic differentiation. Furthermore, LUPT40 exhibited good antibacterial effects because of the slow release of LU. The in vivo results confirmed that PT40 markedly promoted bone formation and LUPT40 further enhanced bone formation/bone bonding. In brief, the incorporation of Ta particles improved the surface behaviors of PT40, which stimulated cell response/bone formation. Moreover, the slow release of LU from LUPT40 not only promoted cell response/bone formation but also enhanced bone bonding. The synergistic effects of Ta and LU release from LUPT40 enhanced bone formation/bone bonding. Therefore, LUPT40 would have great potential for the repair of bear-loading bone.


Assuntos
Osteogênese , Tantálio , Tantálio/farmacologia , Luteolina/farmacologia , Osso e Ossos , Diferenciação Celular , Polímeros/farmacologia
2.
Biomater Adv ; 154: 213638, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37812984

RESUMO

The treatment and reconstruction of large or critical size bone defects is a challenging clinical problem. Additive manufacturing breaks the technical difficulties of preparing complex conformation and anatomically matched personalized porous tantalum implants, but the ideal pore structure for 3D-printed porous tantalum in critical bone defect repair applications remains unclear. Guiding appropriate bone tissue regeneration by regulating proper pore size-pore distribution-pore geometry-porosity is a challenge for its fabrication and application. We fabricated porous tantalum (PTa) scaffolds with six different combinations of pore structures using powder bed laser melting (L-PBF) technology. In vitro biological experiments were conducted to systematically investigate the effects of pore structure characteristics on osteoblast behaviors, showing that the bionic trabecular structure with both large and small poress facilitated cell permeation, proliferation and differentiation compared to the cubic structure with uniform pore sizes. The osteogenesis of PTa with different porosity of trabecular structures was further investigated by a rabbit condyle critical bone defect model. Synthetically, T70% up-regulated the expression of osteogenesis-related genes (ALP, COLI, OCN, RUNX-2) and showed the highest bone ingrowth area and bone contact rate in vivo after 16 weeks, with the best potential for critical bone defect repair. Our results suggested that the bionic trabecular structure with a pore size distribution of 200-1200 µm, an average pore size of 700 µm, and a porosity of 70 % is the best choice for repairing critical bone defects, which is expected to guide the clinical application of clinical 3D-printed PTa scaffolds.


Assuntos
Osteogênese , Tantálio , Animais , Coelhos , Porosidade , Tantálio/farmacologia , Osteogênese/genética , Osso e Ossos , Impressão Tridimensional
3.
Biomater Adv ; 154: 213624, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716333

RESUMO

The periosteum plays a critical role in bone development, shaping, remodeling, and fracture healing due to its abundance of osteoprogenitor cells, osteoblasts, and capillary network. However, the role of periosteum in bone injury healing has been underestimated, thus there is an urgent need to develop a multifunctional artificial periosteum that mimics the natural one. To tackle this issue, electrospinning technology was employed to fabricate an artificial periosteum composed of Poly-ε-caprolactone (PCL) doped with tantalum (Ta) and zinc oxide (ZnO) nanoparticles to enhance its antibacterial, osteogenic, and angiogenic properties. The in vitro cell experiments have demonstrated that the PCL/Ta/ZnO artificial periosteum exhibits excellent biocompatibility and can effectively facilitate osteogenic differentiation of BMSCs as well as angiogenic differentiation of EPCs. Antibacterial experiments have demonstrated the excellent bactericidal effects of PCL/Ta/ZnO artificial periosteum against both S. aureus and E. coli. The subcutaneous infection and critical-sized skull bone defect models have validated its in vivo properties of antibacterial activity, promotion of osteogenesis, and angiogenic potential. The PCL/Ta/ZnO artificial periosteum demonstrates remarkable efficacy in infection control and favorable immunomodulation, thereby achieving rapid vascularized bone repair. In conclusion, the utilization of PCL/Ta/ZnO tissue-engineered periosteum has been demonstrated to exhibit antibacterial properties, pro-vascularization effects, and promotion of osteogenesis at the site of bone defects. This promising approach could potentially offer effective treatment for bone defects.


Assuntos
Osteogênese , Óxido de Zinco , Periósteo , Óxido de Zinco/farmacologia , Tantálio/farmacologia , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia
4.
Colloids Surf B Biointerfaces ; 230: 113506, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572400

RESUMO

Electrospinning technology, as a novel approach, has been extensively applied in the field of tissue engineering. Nanofiber membranes prepared by electrospinning can effectively mimic the structure and function of natural bone matrix, providing an ideal scaffold for attachment, proliferation, and differentiation of bone cells while inducing osteogenic differentiation and new bone formation. However, it lacks bioactivities such as osteoinduction, angiogenesis and the ability to promote nerve regeneration. In the presence of complex critical bone defects, a single component electrospun membrane often fails to suffice for bone repair needs. Based on this, we prepared a biofunctionalized membrane loaded with Tantalum(Ta)/Whitlockite(WH) nanoparticles (poly-ε-caprolactone (PCL)/Ta/WH) in order to promote high-quality bone defect repair through neurovascular coupling effect. According to the results of in vitro and in vivo experiments, the early Mg2+ release of WH can effectively increase the local nerve and vascular density, and synergize with Tantalum nanoparticles (TaNPs) to create a rich nerve-vascular microenvironment. This allows the PCL/Ta/WH membrane to repair bone defects in multiple dimensions and achieve high-quality repair of bone tissue, providing new solutions for the treatment of critical bone defects in clinical.


Assuntos
Nanopartículas , Acoplamento Neurovascular , Osteogênese , Alicerces Teciduais/química , Tantálio/farmacologia , Regeneração Óssea/fisiologia , Engenharia Tecidual/métodos , Nanopartículas/química , Poliésteres/química
5.
Mol Med Rep ; 28(1)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37203399

RESUMO

In the field of orthopedics, defects in large bones have proven challenging to resolve. The aim of the present study was to address this problem through the combination of tantalum metal (pTa) with exosomes derived from bone marrow mesenchymal stem cells (BMSCs), which have the potential to enhance regeneration of full thickness femoral bone defects in rats. Cell culture results demonstrated that exosomes improved the proliferation and differentiation of BMSCs. Following establishment of a supracondylar femoral bone defect, exosomes and pTa were implanted into the defect area. Results demonstrated that pTa acts as a core scaffold for cell adhesion and exhibits good biocompatibility. Moreover, micro­CT scan results as well as histological examination demonstrated that pTa had a significant effect on osteogenesis, with the addition of exosomes further promoting bone tissue regeneration and repair. In conclusion, this novel composite scaffold can effectively promote bone regeneration in large bone defect areas, providing a new approach for the treatment of large bone defects.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Ratos , Animais , Tantálio/metabolismo , Tantálio/farmacologia , Porosidade , Exossomos/metabolismo , Osteogênese , Regeneração Óssea , Fêmur , Células-Tronco Mesenquimais/metabolismo , Alicerces Teciduais , Diferenciação Celular , Engenharia Tecidual/métodos
6.
J Biomed Mater Res A ; 111(9): 1358-1371, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37009822

RESUMO

Due to its excellent biocompatibility and corrosion resistance, tantalum demonstrates versatility as an implant material. However, limited studies investigated the role of tantalum coated titanium-based dental implants. This study aimed to investigate the potential application of micro-nano porous structured tantalum coating on the surface of titanium dental implant. In the present study, micro-nano porous structured tantalum coating was prepared by vacuum plasma spraying (VPS) under selected optimum parameters, various characteristics of tantalum coating (Ta/Ti), including the morphology, potential, constituent, and hydrophilia, were investigated in comparison with its respective control groups, sandblasted titanium (Ti) and titanium coating (Ti/Ti). The adhesion, proliferation, and osteogenic differentiation ability of rat bone marrow mesenchymal cells (BMSCs) on different materials were assessed in vitro. Then the osseointegration capacity of Ti, Ti/Ti, Ta/Ti, and Straumann implants in canine mandible was evaluated with micro-CT, histological sections, and energy dispersive X-ray spectroscopy. These results demonstrated that micro-nanostructured, uneven, and granular tantalum coating was successfully prepared on titanium substrate by VPS with pore size ranging from 50 nm to 5 µm and thickness ranging from 80 to 100 µm. Tantalum coating revealed the highest surface potential, best hydrophilia, and most protein adsorption among Ta/Ti, Ti/Ti, and Ti. Furthermore, Ta/Ti surfaces significantly promoted the adhesion, proliferation, and osteogenic differentiation of BMSCs. In vivo, Ta/Ti implants displayed positive osseointegration capability associated with increased bone mineral density and formation of new bone around implants without tantalum particles released. Together, these findings indicate that tantalum-coated titanium dental implants may serve as a new type of dental implant.


Assuntos
Implantes Dentários , Osseointegração , Ratos , Animais , Osteogênese , Titânio/farmacologia , Titânio/química , Tantálio/farmacologia , Tantálio/química , Propriedades de Superfície
7.
J Biomed Mater Res B Appl Biomater ; 111(6): 1247-1258, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36786241

RESUMO

The development of bioactivity in bioinert metallic alloys is a field of interest aiming to improve some aspects of these materials for implant applications. New Co63 Cr28 W9-x Tax alloys with different Ta concentrations (x = 0, 2, 4, 6, and 9% w/w) were synthesized in the work reported here. The alloys were characterized by x-ray diffraction, volumetric density, Vickers microhardness, atomic force microscopy, scanning electron microscopy (SEM), and energy-dispersion x-ray spectroscopy (EDS). Bioactivity properties were evaluated by in vitro tests with simulated body fluid (SBF). In vivo assays were performed to assess biocompatibility. The influence of surface thermochemical treatment and Ta insertion on the bioactive properties of the alloys was investigated. The results showed that the alloy structure comprises εCo and αCo phases, with cobalt as a matrix with Cr, W, and Ta as a solid solution. TaCo2 phase is observed in the alloys with 4, 6, and 9% w/w of Ta, and its amount increase as Ta concentration increases. Volumetric density is reduced (from 8.78 ± 0.06 to 8.56 ± 0.09 g/cm3 ) as Ta concentration increases (from 0% to 9% w/w) mainly due to the lower density of the tantalum compared to the tungsten metal. On the other hand, the TaCo2 phase contributes to the increase of Vickers's hardness by ~17.6% for the alloy with 9% Ta (394.7 ± 8.1 HV) compared with Co63 Cr28 W9 (336 ± 5 HV). The topographic analysis showed increased roughness and adhesion due to the nucleation of Ta1.1 O1.05 and Ca2 Ta2 O7 crystals after surface thermochemical treatment. The roughness and adhesion increase from 16.9 ± 0.6 nm and 8.3 ± 1.8 nN (untreated surface) to 255.7 ± 17.7 nm and 24.1 ± 12.6 nN (treated surface), respectively, for the Co63 Cr28 Ta9 alloy. These results suggest that thermochemical treatment provides surface conditions favorable to hydroxyapatite (HA) nucleation. The SEM and EDS data showed the nucleation of spongy structures, consistent with HA, composed mainly of Ca and P, indicating that oxides tantalum promoted a bioactive response on the sample's surface. The biological assay corroborated the alloy's safety and applicability, highlighting its potential in biomedical application since no harmful effects were observed.


Assuntos
Ligas , Tantálio , Ligas/farmacologia , Tantálio/farmacologia , Durapatita/química , Metais , Próteses e Implantes , Propriedades de Superfície , Teste de Materiais
8.
Biomed Tech (Berl) ; 68(3): 225-240, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-36587948

RESUMO

Implant-associated infection is the main reasons for implant failure. Titanium and titanium alloy are currently the most widely used implant materials. However, they have limited antibacterial performance. Therefore, enhancing the antibacterial ability of implants by surface modification technology has become a trend of research. Tantalum is a potential implant coating material with good biological properties. With the development of surface modification technology, tantalum coating becomes more functional through improvement. In addition to improving osseointegration, its antibacterial performance has also become the focus of attention. In this review, we provide an overview of the latest strategies to improve tantalum antibacterial properties. We demonstrate the potential of the clinical application of tantalum in reducing implant infections by stressing its advantageous properties.


Assuntos
Tantálio , Titânio , Titânio/farmacologia , Tantálio/farmacologia , Propriedades de Superfície , Próteses e Implantes , Osseointegração , Materiais Dentários , Antibacterianos/farmacologia
9.
ACS Appl Mater Interfaces ; 15(4): 4984-4995, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36649169

RESUMO

Oral squamous cell carcinoma (OSCC) is one of the most common oral malignancies. Radiotherapy is the primary noninvasive treatment of OSCC for avoiding surgery-induced facial deformities and impaired oral function. However, the specificity of in situ OSCC limits radiotherapeutic effects because of the hypoxia-induced low radiosensitivity of tumors and the low radiation tolerance of surrounding normal tissues. Here, we design a highly efficient and low-toxic radiosensitization strategy. On the one hand, biocompatible poly(vinyl pyrrolidone)-modified tantalum nanoparticles (Ta@PVP NPs) not only have strong X-ray deposition capability to upregulate oxidative stress but also have photothermal conversion efficiency to improve hypoxia for tumor radiosensitivity. On the other hand, to optimize the spatial distribution of Ta@PVP NPs within tumors, mussel-inspired catechol with bioadhesive properties is grafted on tumor microenvironment-responsive sodium alginate (DAA) to form in situ hydrogels for precision radiotherapy. On this basis, we find that Ta@PVP-DAA hydrogels effectively inhibit OSCC development in mice under photothermal-assisted radiotherapy without facial deformities and damage to surrounding normal tissues. Overall, our work not only promotes the exploration of Ta@PVP NPs as new radiosensitizers for OSCC but also develops a nanocomposite hydrogel system strategy as a promising paradigm for the precision treatment of orthotopic tumors.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Animais , Camundongos , Nanogéis , Carcinoma de Células Escamosas/tratamento farmacológico , Tantálio/farmacologia , Neoplasias Bucais/tratamento farmacológico , Hidrogéis/farmacologia , Microambiente Tumoral
10.
ACS Biomater Sci Eng ; 9(2): 889-899, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36701762

RESUMO

3D-printed porous titanium (Ti) alloy scaffolds have been reported for facilitating muscle attachment in our previous study. However, the anti-avulsion ability needs to be improved. In this study, we used 3D-printed porous tantalum (Ta) scaffolds to improve muscle attachment. The differences in chemical and physical characteristics and muscle adhesion between the two scaffolds were tested and compared in the gene and protein level both in vitro and in vivo. The possible molecular mechanism was analyzed and further proved. The results showed that compared with the porous Ti alloy, porous Ta had better cell proliferation, differentiation, migration, and adhesion via the integrin-ß1 (Itgb1)-activated AKT/MAPK signaling pathway in L6 rat myoblasts. When artificially down-regulated the expression of Itgb1, cell adhesion and myogenesis differentiation were affected and the phosphorylation of the AKT/MAPK signaling pathway was suppressed. In rat intramuscular implantation, porous Ta had a significantly higher muscle ingrowth rate (85.63% ± 4.97 vs 65.98% ± 4.52, p < 0.01) and larger avulsion force (0.972 vs 0.823 N/mm2, p < 0.05) than the porous Ti alloy. These findings demonstrate that the 3D-printed porous Ta scaffold is beneficial for further clinical application of muscle attachment.


Assuntos
Tantálio , Alicerces Teciduais , Ratos , Animais , Alicerces Teciduais/química , Tantálio/farmacologia , Tantálio/química , Proteínas Proto-Oncogênicas c-akt/genética , Integrina beta1/genética , Porosidade , Músculos , Transdução de Sinais , Ligas/química , Impressão Tridimensional
11.
Int J Biol Macromol ; 221: 371-380, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36067849

RESUMO

Bone defects caused by tumors section, traffic accidents, and surgery remain a challenge in clinical. The drawbacks of traditional autografts and allografts limit their clinical application. 3D printed porous scaffolds have monumental potential to repair bone defects but still cannot effectively promote bone formation. Nano tantalum (Ta) has been reported with effective osteogenesis capability. Herein, we fabricated 3D printed PLA/ß-TCP scaffold by using the fused deposition modeling (FDM) technique. Ta was doped on the surface of scaffolds utilizing the surface adhesion ability of polydopamine to improve its properties. The constructed PLA/ß-TCP/PDA/Ta had good physical properties. In vitro studies demonstrated that the PLA/ß-TCP/PDA/Ta scaffolds considerably promote cell proliferation and migration, and it additionally has osteogenic properties. Therefore, Ta doped 3D printed PLA/ß-TCP/PDA/Ta scaffold could incontestably improve surface bioactivity and lead to better osteogenesis, which may provide a unique strategy to develop bioactive bespoke implants in orthopedic applications.


Assuntos
Tantálio , Alicerces Teciduais , Porosidade , Tantálio/farmacologia , Impressão Tridimensional , Regeneração Óssea , Poliésteres/farmacologia , Osteogênese
12.
ACS Appl Mater Interfaces ; 14(37): 41764-41778, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36087275

RESUMO

3D-printed porous tantalum scaffold has been increasingly used in arthroplasty due to its bone-matching elastic modulus and good osteoinductive ability. However, the lack of antibacterial ability makes it difficult for tantalum to prevent the occurrence and development of periprosthetic joint infection. The difficulty and high cost of curing periprosthetic joint infection (PJI) and revision surgery limit the further clinical application of tantalum. Therefore, we fabricated vancomycin-loaded porous tantalum scaffolds by combining the chemical grafting of (3-aminopropyl)triethoxysilane (APTES) and the electrostatic assembly of carboxymethyl chitosan and vancomycin for the first time. Our in vitro experiments show that the scaffold achieves rapid killing of initially adherent bacteria and effectively prevents biofilm formation. In addition, our modification preserves the original excellent structure and biocompatibility of porous tantalum and promotes the generation of mineralized matrix and osteogenesis-related gene expression by mesenchymal stem cells on the surface of scaffolds. Through a rat subcutaneous infection model, the composite bioscaffold shows efficient bacterial clearance and inflammation control in soft tissue and creates an immune microenvironment suitable for tissue repair at an early stage. Combined with the economic friendliness and practicality of its preparation, this scaffold has great clinical application potential in the treatment of periprosthetic joint infection.


Assuntos
Quitosana , Infecções Relacionadas à Prótese , Animais , Antibacterianos/farmacologia , Biofilmes , Quitosana/farmacologia , Osteogênese , Porosidade , Impressão Tridimensional , Ratos , Tantálio/farmacologia , Alicerces Teciduais/química , Vancomicina/farmacologia
13.
Biomater Adv ; 135: 212736, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35929211

RESUMO

Orthopedic implants with both osteogenesis and antibacterial functions are particularly promising for bone repair and substitutes. In this study, a micro-arc oxidation (MAO) coating containing titanium dioxide (TiO2), gallium oxide (Ga2O3) and tantalum oxide (Ta2O5) on the titanium surface (MGT) was fabricated by dispersing Ga2O3 and Ta microparticles in the electrolyte. The results showed that the simultaneous incorporation of Ga2O3 and Ta microparticles into the MAO coating resulted in optimized surface performance (e.g., micro-topography, roughness, wettability, surface energy, and protein absorption) of MGT compared with pure titanium (pTi). In addition, MGT exhibited outstanding corrosion resistance owing to the presence of both Ga2O3 and Ta microparticles, which exhibit excellent corrosion resistance and their microparticles were incorporated into the micropores of the coating. Moreover, MGT with good cytocompatibility and optimized surface resulted in improved cellular responses (e.g., proliferation and osteogenic differentiation) of rat bone mesenchymal stem cells, which was attributed to Ta microparticles with outstanding osteogenic bioactivity. Furthermore, the excellent antibacterial effect of MGT was attributed to the slow release of Ga3+ from the coating. Thus, the simultaneous incorporation of Ga2O3 and Ta microparticles into the MAO coating of MGT exhibited excellent cytocompatibility, osteogenic bioactivity, antibacterial functions, and corrosion resistance, suggesting that MGT possesses great potential for bone repair applications.


Assuntos
Tantálio , Titânio , Animais , Antibacterianos/farmacologia , Adesão Celular , Materiais Revestidos Biocompatíveis/farmacologia , Gálio , Osteogênese , Ratos , Tantálio/farmacologia , Titânio/farmacologia
14.
ACS Nano ; 16(6): 9428-9441, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35666259

RESUMO

Metastasis of breast carcinoma is commonly realized through lymphatic circulation, which seriously threatens the lives of breast cancer patients. Therefore, efficient therapy for both primary tumor and metastatic sentinel lymph nodes (SLNs) is highly desired to inhibit cancer growth and metastasis. During breast cancer treatment, radiotherapy (RT) is a common clinical method. However, the efficacy of RT is decreased by the radioresistance to a hypoxic microenvironment and inevitable side effects for healthy issues at high radiation doses. Considering the above-mentioned, we provide high biocompatible poly(vinylpyrrolidone) coated Ta nanoparticles (Ta@PVP NPs) for photothermal therapy (PTT) assisted RT for primary tumor and metastatic SLNs. On the one hand, for primary tumor treatment, Ta@PVP NPs with a high X-ray mass attenuation coefficient (4.30 cm2/kg at 100 keV) can deposit high radiation doses within tumors. On the other hand, for metastatic SLNs treatment, the effective delivery of Ta@PVP NPs from the primary tumor into SLNs is monitored by computed tomography and photoacoustic imaging, which greatly benefit the prognosis and treatment for metastatic SLNs. Moreover, Ta@PVP NPs-mediated PTT could enhance the RT effect, and immunogenic cell death caused by RT/PTT could induce an immune response to improve the therapeutic effect of metastatic SLNs. This study not only explores the potential of Ta@PVP NPs as effective radiosensitizers and photothermal agents for combined RT and PTT but also offers an efficient strategy to cure both primary tumor and metastatic SLNs in breast carcinoma.


Assuntos
Neoplasias da Mama , Nanopartículas , Linfonodo Sentinela , Humanos , Feminino , Linfonodo Sentinela/diagnóstico por imagem , Linfonodo Sentinela/patologia , Metástase Linfática/patologia , Tantálio/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linfonodos/patologia , Biópsia de Linfonodo Sentinela , Microambiente Tumoral
15.
Colloids Surf B Biointerfaces ; 215: 112491, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35405535

RESUMO

Porous tantalum-based biomaterial is a novel tissue engineering material widely used in repairing bone defects due to its corrosion resistance, low elastic modulus, high friction coefficient, and excellent biocompatibility. Bone marrow-derived mesenchymal stem cells (BMSCs), a type of pluripotent stem cell, can travel from their original ecological niche to bone injury sites, where they differentiate into osteoblasts and osteocytes. Multiple factors regulate the proliferation, migration, and differentiation of BMSCs. In recent years, the regulatory effects of porous tantalum on BMSCs have been widely studied. Hence, in this study, we reviewed the characteristics of porous tantalum-based biomaterials and the mechanism of action of their regulatory effects on BMSCs. Further, we discuss the feasibility of seeding BMSCs in porous tantalum-based biomaterials for use in tissue repair.


Assuntos
Células-Tronco Mesenquimais , Tantálio , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Células da Medula Óssea , Regeneração Óssea , Diferenciação Celular , Porosidade , Tantálio/farmacologia , Engenharia Tecidual , Alicerces Teciduais
16.
Macromol Biosci ; 22(1): e2100338, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34708567

RESUMO

Treatment of bone and joint tuberculosis remains a challenge. The development of tissue-engineered drug-loaded biomaterials has increased the therapeutic options. However, for the treatment of osteoarticular tuberculosis with severe local infection risks and high weight-bearing requirements, it is still necessary to design materials consistent with bone biomechanics, cytocompatibility, and osteogenesis and to provide more effective antimicrobial functions. The antitubercular drugs isoniazid and rifampicin are loaded with gellan gum, and a 3D-printed porous tantalum surface is treated with polydopamine to increase adhesion. The osteogenic induction and differentiation are tested using alkaline phosphatase, alizarin red staining, sirius red staining, and polymerase chain reaction testing. Bone regeneration in vivo is measured by X-ray, micro-computerized tomography, hard tissue sections, and fluorescence staining. The drug is released slowly in vitro and in vivo, increasing the duration of antibacterial action. The composite bio-scaffolds inhibit Staphylococcus aureus growth, have good biocompatibility, and does not inhibit the induction of osteogenic differentiation of rat bone marrow mesenchymal stem cells. The composite bio-scaffold can simultaneously achieve localized long-term controlled drug release and bone regeneration and is a promising route for bone and joint tuberculosis treatment.


Assuntos
Osteogênese , Tantálio , Animais , Antituberculosos/farmacologia , Regeneração Óssea , Diferenciação Celular , Porosidade , Impressão Tridimensional , Ratos , Tantálio/farmacologia , Engenharia Tecidual/métodos , Alicerces Teciduais
17.
J Mech Behav Biomed Mater ; 124: 104800, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34507034

RESUMO

Surface characteristics of the biomaterials have significant effects on response of osteoblast and formation of new bone tissue. In this study, to improve the bio-performance of polyimide (PI) as an implantable material for bone substitute, concentrated sulfuric acid suspension with tantalum (V) oxide (vTO) submicro-particles of 10w% (PIST10) and 15w% (PIST15) was utilized to modify PI surface. After sulfonation, microporous coatings including vTO particles were created on PI (PIST10 and PIST15) while microporous coating without vTO particles was also created on PI (PIS). Results showed that surface roughness, hydrophilicity and protein adsorption of PIST15 was remarkably higher than PIST10 and PIS. Furthermore, after soaking into simulated body fluid (SBF), no apatite mineralization on PIS was found, while PIST15 with high vTO content exhibited better apatite mineralization compared with PIST10. Moreover, PIS showed low antibacterial property, while PIST15 with high vTO content revealed better antibacterial property compared with PIST10. In addition, cellular response (such as adhesion, proliferation and alkaline phosphatase activity) of bone marrow stromal cells (BMSC) of rat to PIST15 was higher than PIST10 and PIS. In conclusion, the microporous coating of PIST15 including vTO submicro-particles possessed good antibacterial property and bioactivity, which significantly promoted the responses of BMSC. Therefore, PIST15 has potential application prospects for bone substitute.


Assuntos
Óxidos , Tantálio , Animais , Antibacterianos/farmacologia , Proliferação de Células , Materiais Revestidos Biocompatíveis/farmacologia , Ratos , Propriedades de Superfície , Tantálio/farmacologia
18.
Colloids Surf B Biointerfaces ; 208: 112055, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34438295

RESUMO

Implant-associated infections and aseptic loosening are some of the main reasons for implant failure. Therefore, there is an urgent need to improve the osseointegration and antibacterial capabilities of implant materials. In recent years, a large number of breakthroughs in the biological application of tantalum and its derivatives have been achieved. Owing to their corrosion resistance, biocompatibility, osseointegration ability, and antibacterial properties, they have shown considerable potential in orthopedic and dental implant applications. In this review, we provide the latest progress and achievements in the research on osseointegration and antibacterial properties of tantalum as well as its derivatives, and summarize the surface modification methods to enhance their osseointegration and antibacterial properties.


Assuntos
Implantes Dentários , Tantálio , Antibacterianos/farmacologia , Osseointegração , Osteogênese , Porosidade , Propriedades de Superfície , Tantálio/farmacologia , Titânio/farmacologia
19.
Biomed Mater ; 16(5)2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34192669

RESUMO

Traditional metal materials, such as stainless steel and titanium (Ti) alloys, are still the gold standards for fracture fixation. However, the elastic moduli of these materials differ from that of human cortical bone, and the stress shielding effect affects fracture healing, leading to secondary fractures. Herein, a new porous Ta coated SiC (pTa-SiC) scaffold using in internal fixation devices with good mechanical and biological properties was prepared based on porous silicon carbide (SiC) scaffold and tantalum (Ta) metal. The osteogenic and osseointegration properties of the pTa-SiC scaffold were investigated by bothin vitroandin vivotests. The results showed that compared with porous titanium (pTi), the pTa-SiC promoted the proliferation, migration, and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Moreover, the internal fixation tests were carried out in a goat load-bearing femoral neck fracture model. Histological results showed good osseointegration around the pTa-SiC screws. And the acid etching results showed that bone cells grew tightly on the pTa-SiC throughout bone canaliculi, and the growth mode was contact osteogenesis, which indicated good biological fixation effects. Therefore, it is reasonable to be expected that the new pTa-SiC scaffold with excellent mechanical and biological properties could be a promising candidate for bone implant field.


Assuntos
Parafusos Ósseos , Compostos Inorgânicos de Carbono , Osseointegração/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Compostos de Silício , Tantálio , Animais , Compostos Inorgânicos de Carbono/química , Compostos Inorgânicos de Carbono/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Fraturas do Colo Femoral/metabolismo , Cabras , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Porosidade , Compostos de Silício/química , Compostos de Silício/farmacologia , Tantálio/química , Tantálio/farmacologia
20.
Mater Sci Eng C Mater Biol Appl ; 124: 112008, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33947579

RESUMO

The formation of a porous oxide surface doped with osteoconductive elements, Ca, P and Mg, to enhance osseointegration, was achieved through micro arc oxidation. Micro arc oxidation parameters, such as electrolyte composition, concentration and applied voltage, were studied to understand their effect on the morphology and chemical composition of the samples surface. Considering the optimum atomic concentration reported in literature for each osteoconductive element, microporous Ta anodic oxide samples treated with calcium acetate (CaA) and ß-glycerophosphate (ß-GP) revealed that an increase of ß-GP molarity in the electrolyte boosts Ca incorporation, as well as, increasing the porosity. In adding magnesium acetate (MgA) to the electrolyte, when composed by CaA + ß-GP, both addition and variation of MgA did not affect the surface morphology along the samples, being incorporated into the oxide layer for 0.1 M. Finally, in vitro tests were carried out to study the biocompatibility of Ta, to verify the cytotoxicity of the samples and their behavior towards cells, by performing adhesion and differentiation tests with the MC3T3-E1 cell line. Cytotoxicity tests revealed that the samples were non-toxic. Despite none of the samples having been raised up through cell adhesion tests, cell differentiation revealed promising results for the Ta-CaP.


Assuntos
Tantálio , Titânio , Acetatos , Compostos de Magnésio , Osteoblastos , Óxidos/farmacologia , Propriedades de Superfície , Tantálio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA